C.U.SHAH UNIVERSITY Winter Examination-2021

Subject Name: Real Analysis-I

Subje	ct Code: 4SC05REA1	Branch: B.Sc. (Mathema	tics)
Seme	ster: 5 Date: 13/12/2021	Time: 11:00 To 02:00	Marks: 70
(1 (2 (3	 Use of Programmable calculator & any oth Instructions written on main answer book Draw neat diagrams and figures (if necess Assume suitable data if needed. 	are strictly to be obeyed.	rohibited.
Q-1	Attempt the following questions:		(14)
a)	Define: Field structure		(02)
b)	Find the infimum and supremum of $\left\{\frac{1}{n}: n \in \right\}$	$N \bigg\}.$	(01)
c)	Define: Bounded sequence		(01)
d)	State sandwich theorem for sequence.		(02)
e)	True/False: $\sum \frac{1}{n^3}$ is divergent.		(01)
f)	Define: Cauchy Sequence, Monotonic incre	easing sequence	(02)
g)	True/False: Every bounded sequence is con	vergent.	(01)
h)	State Cauchy's root test for series.		(02)
i)	Check the series $\sum_{n=1}^{\infty} \left(\frac{5}{6}\right)^n$ is converges or div	verges.	(02)
Attemp	t any four questions from Q-2 to Q-8		
Q-2	Attempt all questions		(14)
a)	Prove that the set of rational numbers is not	1	(05)
b)	State and prove Bolzano Weierstrass theorem	m for sequences.	(05)
c)	Define: Supremum and Infimum and also find $((-1)^n)$	nd it for the following set:	(04)
	i) $\left\{\frac{1}{n}; n \in N\right\}$ ii) $\left\{\frac{(-1)^n}{n}; n \in N\right\}$		

Q-3 Attempt all questions

a) Using Sandwich theorem, prove that
$$\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right] = 1.$$
(05)

(14)

Page 1 of 2

b)	Find $\underline{\lim} a_n$ and $\overline{\lim} a_n$ for the sequences $\{a_n\}$, where $a_n = (-1)^n \left(1 + \frac{1}{n}\right)$.	(05)		
c)	Show that every open interval contains a rational number.	(04)		
Q-4 a) b)	Attempt all questions State and prove Cauchy's general principle of convergence for sequence. If $\{a_n\}$ is any sequence then prove the followings: (i) $\underline{\lim}(-a_n) = -\overline{\lim} a_n$ and (ii) $\overline{\lim}(-a_n) = -\underline{\lim}(a_n)$ Prove that $\lim_{n\to\infty} \frac{1+3+5+\ldots+(2n-1)}{n^2} = 1$	(14) (07) (04) (03)		
Q-5 a)	Attempt all questions State Leibnitz test for alternating series and using it test the convergence of the series $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$	(14) (05)		
b)	Show that the series $\frac{1\cdot 2}{3^2\cdot 4^2} + \frac{3\cdot 4}{5^2\cdot 6^2} + \frac{5\cdot 6}{7^2\cdot 8^2} + \dots$ is convergent.	(05)		
c)	Show that $\lim_{n \to \infty} \frac{3 + 2\sqrt{n}}{\sqrt{n}} = 2$ by using the definition.	(04)		
Q-6	Attempt all questions	(14)		
a)	State and prove D'Almbert's ratio test.	(09)		
b)	Prove that the series $\frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2^2} + \frac{1}{3} \cdot \frac{1}{2^3} - \frac{1}{4} \cdot \frac{1}{2^4} + \dots$ is absolutely convergent.	(05)		
Q-7 a)	Attempt all questions Show that the geometric series $1+r+r^2+$ is i) Convergent if $ r < 1$, ii) divergent if $r \ge 1$, iii) finitely oscillating if $r = -1$ and iv) Infinitely oscillating if $r < -1$.	(14) (07)		
b)	Test the convergence of the series $x + \frac{x^2}{2} + \frac{x^3}{3} + \dots; x > 0$.	(04)		
c)	Test the behavior of the series $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots$	(03)		
Q-8	Attempt all questions	(14)		
a)	Test the convergence of the series $1+x+\frac{2^2x^2}{2!}+\frac{3^3x^3}{3!}+\dots, x>0$	(07)		
b)	Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\log(n+1)}$ is conditionally convergent.	(05)		
c)	State Cesaro's theorem.	(02)		
Page 2 of 2				

